EEEEEEEE
EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-423702

Petascale Computing Enabling
Technologies Project Final
Report

B. R. de Supinski

February 16, 2010



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.



Petascale Computing Enabling Technologies Project Final Report

The Petascale Computing Enabling Technologies (PCET) project addressed challenges
arising from current trends in computer architecture that will lead to large-scale systems
with many more nodes, each of which uses multicore chips. These factors will soon lead to
systems that have over one million processors. Also, the use of multicore chips will lead to
less memory and less memory bandwidth per core. We need fundamentally new
algorithmic approaches to cope with these memory constraints and the huge number of
processors. Further, correct, efficient code development is difficult even with the number of
processors in current systems; more processors will only make it harder.

The goal of PCET was to overcome these challenges by developing the computer science
and mathematical underpinnings needed to realize the full potential of our future large-
scale systems. Our research results will significantly increase the scientific output obtained
from LLNL large-scale computing resources by improving application scientist productivity
and system utilization. Our successes include scalable mathematical algorithms that adapt
to these emerging architecture trends and through code correctness and performance
methodologies that automate critical aspects of application development as well as the
foundations for application-level fault tolerance techniques.

PCET's scope encompassed several research thrusts in computer science and mathematics:
code correctness and performance methodologies, scalable mathematics algorithms
appropriate for multicore systems, and application-level fault tolerance techniques. Due
to funding limitations, we focused primarily on the first three thrusts although our work
also lays the foundation for the needed advances in fault tolerance.

In the area of scalable mathematics algorithms, our preliminary work established that
OpenMP performance of the AMG linear solver benchmark and important individual
kernels on Atlas did not match the predictions of our simple initial model. Our
investigations demonstrated that a poor default memory allocation mechanism degraded
performance. We developed a prototype NUMA library to provide generic mechanisms to
overcome these issues, resulting in significantly improved OpenMP performance. After
additional testing, we will make this library available to all users, providing a simple means
to improve threading on LLNL's production Linux platforms. We also made progress on
developing new scalable algorithms that target multicore nodes. We designed and
implemented a new AMG interpolation operator with improved convergence properties for
very low complexity coarsening schemes. This implementation will also soon be available
to LLNL's application teams as part of the hypre library. We presented results for both
topics in an invited plenary talk entitled “Efficient Sparse Linear Solvers for Multi-Core
Architectures” at the 2009 HPCMP Institutes Annual Meeting/CREATE Annual All-Hands
Meeting. The interpolation work was summarized in a talk entitled “Improving
Interpolation for Aggressive Coarsening" at the 14th Copper Mountain Conference on
Multigrid Methods and in a research paper that will appear in Numerical Linear Algebra
with Applications [1].



In the area of code correctness, we significantly extended our behavior equivalence class
identification mechanism. Specifically, we not only demonstrated it works well at very
large scales [2] but we also added the ability to classify MPI tasks not only by function call
traces, but also by specific call sites (source code line numbers) being executed by tasks.
More importantly, we developed a new technique to determine relative logical execution
progress of tasks in the equivalence classes by combining static analysis with our original
dynamic approach. We applied this technique to a correctness issue that arose at 4096
tasks during the development of the new AMG interpolation operator discussed above. This
scale isat the limit of effectiveness of production tools, but our technique quickly located
the erroneous source code, demonstrating the power of understanding relationships
between behavioral equivalence classes. This work is the subject of a paper recently
accepted to SC09 [3], as well as a presentation entitled "Providing Order to Extreme Scale
Debugging Chaos" given at the ParaDyn Week annual conference in College Park, MD. In
addition to this theoretical extension, we have made significant progress in developing a
front end for this tool set, and the front-end is now available on several of LLNL's large-
scale computing resources. In addition, we explored mechanisms to identify exact locations
of erroneous MPI usage in application source code. In this work, we developed a new
model that led to a highly efficient algorithm for detecting deadlock during dynamic
software testing. This work was the subject of a well-received paper at ICS 2009 [4].
Finally, we have worked with the University of Wisconsin to develop key infrastructure to
apply Cooperative Bug Isolation (CBI) to MPI applications. Specifically, we have developed
a ROSE-based instrumentor that will allow us to apply this technique to key LLNL
applications such as KULL. Preliminary tests with this infrastructure indicate that it has
relatively low overhead. As this work extends CBI instrumentation to C++ for the first time,
several unique issues arose related to objected-oriented code. These are the subject of a
paper currently in preparation.

In the area of performance analysis, we developed and extended a wavelet-based
technique to gather load balance data scalably [5]. We demonstrated that the mechanism
works at 16K tasks on BG/P for real applications. We also applied the technique to PF3D
and began to identify code sections that contribute to imbalances in large-scale runs on our
production Linux platforms. As part of this work, we developed a front-end for the tool that
lets developers scalably visualize load balance of specific code regions on LC machines. The
front-end exploits the wavelet representation to display 3D models of massively parallel
data efficiently, and it can perform cluster analysis to discover regions of code with similar
behavior. The GUI is built on top of VTK, which will enable us to exploit sophisticated
visualization techniques such as volume rendering to correlate performance data directly
with application data and to optimize model partitioning. This work was the subject of
Todd Gamblin's dissertation [6], which he successfully defended while working as an intern
on PCET. His work has also had impact on other PCET-related projects, including the
creation of a prototype library for scalable call path tracking in the presence of dynamic
loading that is currently being used in our scalable MPI fault injection work.

In the area of fault tolerance, our initial work in developing models of how soft faults
propagate through application code led to Greg Bronevetsky’'s successful Early Career
Investigator Award from the Office of Science. These models use fault injection to



characterize the impact of soft faults on short regions of application code. These
characterizations take the form of erro patterns that can be emulated for repeated testing
of the impact of faults on larger regions of the code. We plan to combine this mechanism
with compiler-based analyses that capture the flow of faults through application code to
determine code regions that are particularly vulnerable to errors. We will then develop
techniques to protect those vulnerable regions.

Overall, PCET successfully met many of the challenges arising in future large-scale systems.
Perhaps more importantly, it has laid the groundwork for further advances that will
ultimately substantially increase the overall usability of those systems.

References:

[1] U.M. Yang. On Long Range Interpolation Operators for Aggressive Coarsening. To
appear in Numerical Linear Algebra with Applications. Available as LLNL Technical Report
LLNL-JRNL-413051, May 2009.

[2] G.L. Lee, D.H. Ahn, D.C. Arnold, B.R. de Supinski, M. Legendre, B.P. Miller, M. Schulz, and
B. Liblit. Lessons Learned at 208K: Towards Debugging Millions of Cores. In
SuperComputing 2008 (SC08), Austin, TX, Nov. 2008.

[3] D.H. Ahn, B.R. de Supinski, I. Laguna, G.L. Lee, B. Liblit, B.P. Miller, and M. Schulz.
Scalable Temporal Order Analysis for Large Scale Debugging. In SuperComputing 2009
(SC09), Portland, OR, Nov. 2009.

[4] T. Hilbrich, B. de Supinski, M. Schulz, and M. Mueller. A Graph Based Approach for MPI
Deadlock Detection. In International Conference on Supercomputing (ICS 2009), June 2009.

[5] T. Gamblin, B.R. de Supinski, M. Schulz, R.]J. Fowler, and D.A. Reed. Scalable Load-Balance
Measurement for SPMD Codes. In Supercomputing 2008 (SC’08), Austin, TX, Nov. 2008.

[6] T. Gamblin. Scalable Performance Measurement and Analysis. PhD thesis, University of
North Carolina at Chapel Hill, Chapel Hill, NC, Aug. 2009.



